Second Order System Frequency Response

$$m \coloneqq 15 \cdot slug$$

mass

$$k = 500 \cdot \frac{lbf}{ft}$$

spring constant

$$b \coloneqq 20 \cdot \frac{lbf \cdot sec}{ft}$$

damping coefficient

$$\omega_n \coloneqq \sqrt{\frac{k}{m}} = 5.774 \; \frac{rad}{s}$$

natural frequency

$$\zeta \coloneqq \frac{b}{2 \cdot \sqrt{k \cdot m}} = 0.115$$

damping ratio

$$\omega_r = \frac{\omega}{\omega_n}$$

frequency ratio

$$A\left(\omega_{r}\right)\coloneqq\frac{1}{\sqrt{\left(1-{\omega_{r}}^{2}\right)^{2}+4\cdot\zeta^{2}\cdot{\omega_{r}}^{2}}}$$

amplitude ratio as a function of frequency ratio

$$A(1) = 4.33$$

amplitude ratio at resonance

$$\phi\left(\omega_{r}\right)\coloneqq-\mathrm{angle}\left(\frac{1}{\omega_{r}}-\omega_{r},2\bullet\zeta\right)$$

phase angle as a function of frequency ratio

$$\phi(1) = -90 \ deg$$

phase angle at resonance

