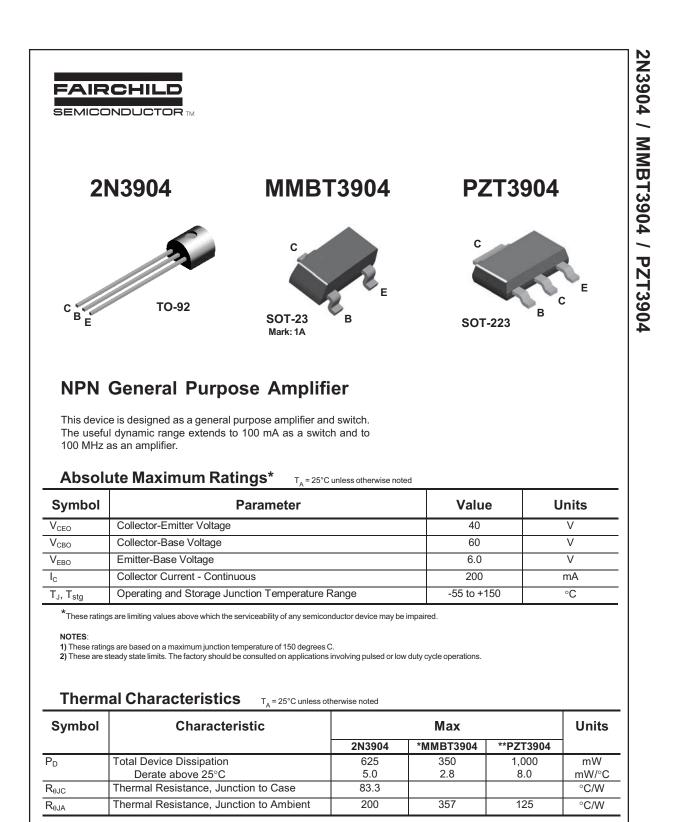
Laboratory 5

Transistor and Photoelectric Circuits

Required Components:

- $1 \ 330\Omega$ resistor
- $2 \ 1 \ k\Omega$ resistors
- $1 \ 10 k\Omega$ resistor
- 1 2N3904 small signal transistor
- 1 TIP31C power transistor
- 1 1N4001 power diode
- 1 Radio Shack 1.5-3V DC motor (RS part number: 273-223)
- 1 LED
- 1 photodiode/phototransistor pair (Digikey part number: H21A1QT-ND)


5.1 **Objectives**

In this laboratory, you will study bipolar junction transistors (BJTs) and common photoelectric components. You will learn how to use light-emitting diodes (LEDs) as indicators, switch an inductive load with a power BJT, and use LED and phototransistor pairs as photo-interrupters. You will also learn how to bias a transistor and how to provide flyback protection with a diode.

5.2 Introduction

The following two pages provide information from the 2N3904 transistor data sheet. Data sheets provide pin-out information, where each pin is labeled with a function name and, if appropriate, a number. A data sheet also provides detailed electrical specifications that can help you properly design a circuit using the component.

Figure 5.1 illustrates the nomenclature used to describe the behavior of an npn bipolar transistor. It is a three terminal device consisting of the base, collector, and emitter. The transistor acts like a current valve by using the voltage bias across the base and emitter (V_{BE}) to control the flow of current in the collector-emitter circuit (I_C). The circuit connected to the collector and emitter along with the bias voltage dictate how much current flows.

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

** Device mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm; mounting pad for the collector lead min. 6 cm².

Electrical Characteristics T _A = 25°C unless otherwise noted							
Symbol	Parameter	Test Conditions	Min	Max	Units		
OFF CHAF	RACTERISTICS						
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	I _C = 1.0 mA, I _B = 0	40		V		
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu \text{A}, \ I_{\rm E} = 0$	60		V		
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	I _E = 10 μA, I _C = 0	6.0		V		
I _{BL}	Base Cutoff Current	V _{CE} = 30 V, V _{EB} = 3V		50	nA		
I _{CEX}	Collector Cutoff Current	V _{CE} = 30 V, V _{EB} = 3V		50	nA		
V _{CE(sat)} V _{BE(sat)}	Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage	$\begin{array}{c} I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \end{array}$	30	0.2 0.3 0.85	V V V		
		$I_{\rm C} = 50$ mA, $I_{\rm B} = 5.0$ mA		0.95	V		
	GNAL CHARACTERISTICS						
fT	Current Gain - Bandwidth Product	$I_{C} = 10 \text{ mA}, V_{CE} = 20 \text{ V},$ f = 100 MHz	300		MHz		
C _{obo}	Output Capacitance	$V_{CB} = 5.0 \text{ V}, I_E = 0,$ f = 1.0 MHz		4.0	pF		
Cibo	Input Capacitance	$V_{EB} = 0.5 V, I_C = 0,$ f = 1.0 MHz		8.0	pF		
NF	Noise Figure	I _C = 100 μA, V _{CE} = 5.0 V,		5.0	dB		

*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

Storage Time

Fall Time

Spice Model

ts

t_f

NPN (Is=6.734f Xti=3 Eg=1.11 Vaf=74.03 Bf=416.4 Ne=1.259 Ise=6.734 Ikf=66.78m Xtb=1.5 Br=.7371 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=3.638p Mjc=.3085 Vjc=.75 Fc=.5 Cje=4.493p Mje=.2593 Vje=.75 Tr=239.5n Tf=301.2p Itf=.4 Vtf=4 Xtf=2 Rb=10)

 V_{CC} = 3.0 V, I_{C} = 10mA

 $I_{B1} = I_{B2} = 1.0 \text{ mA}$

2N3904 / MMBT3904 / PZT3904

200

50

ns

ns

Lab 5

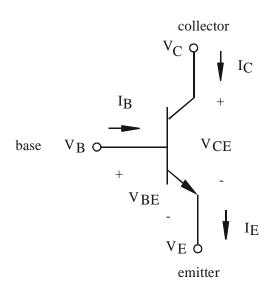


Figure 5.1 npn Bipolar Transistor Symbol and Nomenclature

Here are some general relationships between the variables shown in Figure 5.1:

$$V_{BE} = V_B - V_E \tag{5.1}$$

$$V_{CE} = V_C - V_E \tag{5.2}$$

$$I_E = I_B + I_C \tag{5.3}$$

Also, generally,

$$V_{\rm C} > V_{\rm E} \tag{5.4}$$

When the transistor is in saturation (i.e., fully ON),

$$V_{BE} \approx 0.6V \text{ to } 0.7V, \quad V_{CE} \approx 0.2V, \text{ and } I_C >> I_B$$
 (5.5)

and when the transistor is in its cutoff state,

$$V_{BE} < 0.6V$$
 and $I_B = I_C = I_E = 0$ (5.6)

In the cutoff state, the transistor does not conduct current.

5.3 Laboratory Procedure / Summary Sheet

Group: ____ Names: ____

Build the simple LED indicator circuit shown below (without the 2nd resistor). See Figure 4.7 in Lab 4 to identify the LED polarity. Gradually increase V_{in} from 0 V to 5 V and record V_{in} and measure V_D when you consider the LED to be on. Also calculate (don't measure) the current I_D based on the recorded voltages.

- V_D = _____
- I_D = _____

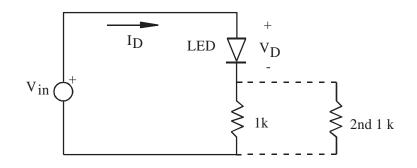


Figure 5.2 LED Circuit

- (2) Add the second resistor in parallel and repeat the same experiment.
 - Vin = _____
 - V_D = _____
 - I_D = _____

Explain what happened and why.

(3) Build a simple transistor switch (see figure below) using a 2N3904 small signal transistor and a base resistor (R_B) of 1 k Ω . Use the variable voltage power supply or the function generator dc output for V_{in} so it can be adjusted later in small increments. Use the DC power supply for the 10V source.

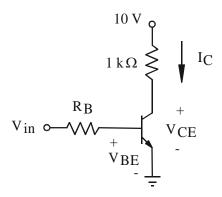


Figure 5.3 Transistor Switch

Use the 2N3904 datasheet provided in Section 5.2 to help you **draw and label the pins on the figure below** and to record the following values:

maximum allowed $I_C =$ _____ maximum allowed $V_{CE} =$ _____

minimum required V_{BE} for saturation = _____

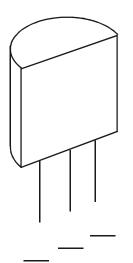


Figure 5.4 2N3904 Pin-out

V _{in}	V _{BE}	V _{CE}
0.0		
0.4		
0.5		
0.6		
0.7		
0.8		
0.9		
1.0		

Vary V_{in} as indicated in the table below and record the associated values for V_{BE} and V_{CE} . Use R_B = 1 k Ω for the base resistor.

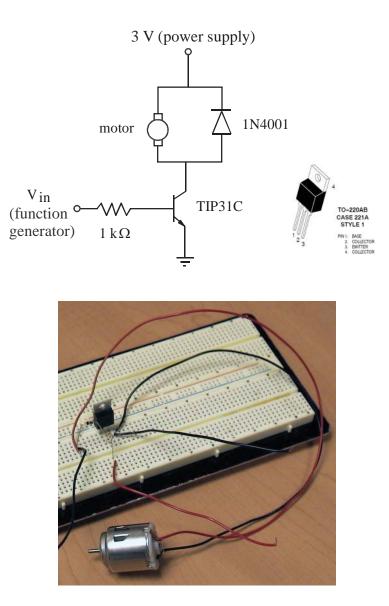
Describe your conclusions about when saturation occurs for the transistor.

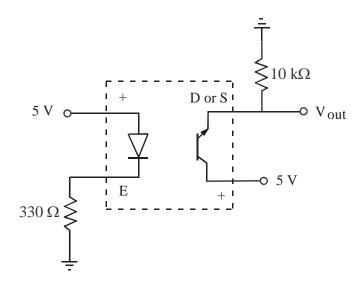
Change the base resistor (R_B) to 10 $k\Omega$ and repeat the measurements.

V _{in}	V _{BE}	V _{CE}
0.0		
0.4		
0.5		
0.7		
0.9		
1.1		
1.3		
1.5		

What is the effect of a larger base resistor? Why?

(4) Build the circuit shown in Figure 5.5 with a TIP31C transistor (note the pinout shown in the right side of the diagram below) and a 1.5V-3V DC motor. The TIP31C transistor is required to provide adequate current to the motor. Be sure to use the flyback diode as shown. This diode provides protection to the transistor when control signal V_{in} is turned off. Flyback diodes are recommended when switching inductive loads such as motors and solenoids. The 1N4001 power diode is well suited to this motor since the motor current is well within the surge current capacity of the diode.




Figure 5.5 Motor and Flyback Diode

Gradually increase V_{in} from 0 V to 5 V and describe what happens.

Apply a 5Vpp, 2.5V dc offset (0 to 5V) square wave input to V_{in} . Start with a low frequency (e.g., 1 Hz) and then try some higher frequencies, increasing the frequency in 1 Hz increments up to 20 Hz and then 10 Hz increments up to 100 Hz. Describe what happens to the motor.

Explain how the flyback diode works.

(5) Examine the photo-interrupter and look at its specifications. Build the circuit shown in Figure 5.6, using the resistors indicated. Note that a single 5V source can be used to provide both voltage signals, and the ground for the input and output circuits must be connected to be common.

Measure the output voltage (V_{out}) with and without the beam interrupted (e.g., with a thick sheet of paper or a plastic card). What conditions (interrupted or not) correspond to the high and low states of the output? Explain why each condition results in the respective state.

Why are the resistors required?