
Lab 11

155

Laboratory 11

Pulse-Width-Modulation Motor Speed Control with a PIC

Required Components:
• 1 PIC16F88 18P-DIP microcontroller
• 3 0.1 F capacitors
• 1 12-button numeric keypad
• 1 NO pushbutton switch
• 1 Radio Shack 1.5-3V DC motor (RS part number: 273-223) or equivalent
• 1 IRF620 power MOSFET
• 1 flyback diode (e.g., the 1N4001 power diode)
• 3 1k resistors
• 1 2k resistor (or 2 1k resistors)
• 1 3k resistor (or 3 1k resistors)
• 3 red LEDs
• 1 green LED
• 4 330 resistors or a 330 8-resistor DIP

Required Special Equipment and Software:
• Mecanique’s Microcode Studio integrated development environment software
• MicroEngineering Labs’ PicBasic Pro compiler
• MicroEngineering Labs’ U2 USB Programmer

11.1 Objective

The objective of this laboratory exercise is to design and build hardware and software to
implement pulse-width modulation (PWM) speed control for a small permanent-magnet dc motor.
You will also learn how to interface a microcontroller to a numeric keypad and how to provide a
numerical display using a set of LEDs.

11.2 Introduction

Pulse Width Modulation

Pulse width modulation (PWM) offers a very simple way to control the speed of a dc
motor. Figure 11.1 illustrates the principles of operation of PWM control. A dc voltage is rapidly
switched at a fixed frequency f between two values (“ON” and “OFF”). A pulse of duration t
occurs during a fixed period T, where

(11.1)

The resulting asymmetric waveform has a duty cycle defined as the ratio between the ON time and
the period of the waveform, usually specified as a percentage:

(11.2)

T
1
f
---=

duty cycle
t
T
---100%=

Lab 11

156

As the duty cycle is changed (by varying the pulse width t), the average current through the motor
will change, causing changes in speed and torque at the output. It is primarily the duty cycle, and
not the value of the power supply voltage, that is used to control the speed of the motor.

Figure 11.1 Pulse-width Modulation (PWM)

With a PWM motor controller, the motor armature voltage switches rapidly, and the current
through the motor is affected by the motor inductance and resistance. For a fast switching speed
(i.e., large f), the resulting current through the motor will have only a small fluctuation around an
average value, as illustrated in Figure 11.2. As the duty cycle gets larger, the average current gets
larger and the motor speed increases.

Figure 11.2 PWM voltage and motor current

The type of PWM control described here is called "open loop" because there is no sensor
feedback for speed. This results in a simple and inexpensive design, but it is not possible to achieve
accurate speed control without feedback. For precision applications (e.g., industrial robotics), a
speed sensor (e.g., a tachometer) is required to provide feedback to the electronics or software in
order to adjust the PWM signal in real-time to maintain the desired speed. See Section 10.5.3 in
the textbook for more information.

DC power
supply

() Vs

+

PWM
electronics

dc motor

example dc motor drive circuit

pulses:

slower
(small)t

t

T

Vs

T

faster
(large)t

t

high duty cycle

PWM
voltage

motor
current

low duty cycle

Lab 11

157

Numeric Keypad Interface

Figure 11.3 illustrates the appearance and electrical schematic for a common 12-key
numeric keypad; although, the pin numbering isn’t always consistent from one manufacturer to
another. When interfaced to a microcontroller, a keypad allows a user to input numeric data. A
keypad can also be used simply as a set of general-purpose normally-open (NO) pushbutton
switches. The standard method to interface a keypad to a microcontroller is to attach the four row
pins to inputs of the microcontroller and attach the three column pins to outputs of the
microcontroller. By polling the states of the row inputs while individually changing the states on
the column outputs, you can determine which button is pressed. See Section 7.7.1 in the textbook
for more information. An alternative method to interface the keypad, if you do not have the luxury
of seven spare I/O lines, is to wire the keypad through a set of resistors in series with a capacitor
to ground. This allows you to use the PicBasic Pro "Pot" command to determine which button is
pressed by reading the effective resistance of the keypad through a single pin of the
microcontroller. The circuit presented in the next section uses this method.

Figure 11.3 Standard 12-key numeric keypad

NOTE: If the pin-out of the keypad you are using is unknown, you can do a series of
continuity tests (with different buttons held down) to easily determine the pin-out
corresponding to Figure 11.3b.

NOTE: Keypads sometimes include an 8th pin, but it is not used in the wiring of the buttons.

1 2 3

4 5 6

7 8 9

* 0 #

7

6

5

4

3 2 1

col 1 col 2 col 3

row 1

row 2

row 3

row 4

keypad

1 2 3

4 5 6

7 8 9

* 0 #

a) device appearance b) device electrical schematic

1234567

Lab 11

158

11.3 Hardware and Software Design

The hardware and software required for this exercise will be designed using the
microcontroller-based design procedure presented in Section 7.9 of the textbook. Each step is
presented below.

(1) Define the problem.

Use a PIC16F84 microcontroller to design a pulse-width modulation speed controller
for a small permanent magnet dc motor. The user should be able to change the speed
via three buttons of a standard 12-key numeric keypad. One button (the 1-key) should
increase the speed setting, a second button (the 4-key) should decrease the speed
setting, and the third button (the *-key) should start the motor at the selected speed.
The speed setting should be displayed graphically via a set of 4 LEDs. The speed
setting should vary from "slow" to "fast" according to a scaled number ranging from
0 to 15 so the full range can be depicted on the LED display. The motor should run
at a constant speed until the motion is interrupted by the user with the press of a
pushbutton switch.

(2) Draw a functional diagram.

This is left as an exercise for you. Please include it on a separate sheet of paper with
your summary sheet and questions at the end of the Lab. See Section 7.9 in the
textbook for guidance.

(3) Identify I/O requirements.

All inputs and outputs for this problem are digital and they are as follows:

inputs:
- 3 buttons on the numeric keypad to increase and decrease the speed and to start the
motion.
- 1 pushbutton switch to interrupt the constant speed motor motion.

outputs:
- 4 LEDs to indicate a relative speed setting from "slow" (0) to "fast" (15) as a binary
number.
- 1 pulse-width modulation (on-off) signal for the motor.

(4) Select an appropriate microcontroller.

For this problem, we will use the PIC16F84 whose 13 lines of digital I/O provide
more than enough capability for our I/O requirements.

(5) Identify necessary interface circuits.

To help you learn how to use a numeric keypad in the most efficient way, we will
show you how to connect the rows and columns of the keypad through a network of
resistors in series with a capacitor through a single pin on the PIC. With the help of
the PICBasic Pro command "Pot," we can determine which button is pressed based
on the time constant of the resulting RC network. The resistance will change based
on which button is pressed. Only a single digital input is required to implement this
method.

Lab 11

159

The motor speed will be controlled with a pulse-width modulation signal. We will
use a power MOSFET to switch current to the motor. Figure 11.4 shows the pin-out
diagram for the MOSFET. The gate (G), drain (D) and source (S) are analogous to
the BJT base (B), collector (C) and emitter (E), respectively. The gate of the
MOSFET will be connected directly to a digital output pin on the PIC. The motor is
placed on the drain side of the MOSFET with a diode for flyback protection. A
MOSFET is easier to use than BJT because it does not require a base (gate) resistor,
and you need not be concerned with base current and voltage biasing.

The LEDs will be connected directly to four digital outputs through current-limiting
resistors to ground. When the output goes high, the LED will turn on.

Figure 11.4 MOSFET pin-out and schematic symbol

(6) Decide on a programming language.

For this laboratory exercise, we will use PicBasic Pro.

(7) Draw the detailed wiring diagram.

Figure 11.5 shows the complete wiring diagram showing all components and
connections. Figure 11.6 shows a photograph of a completed design.

The keypad is attached to PORTA.2 and the stop button is attached to PORTA.3. The
keypad is wired such that different resistors are in series with a fixed capacitor
depending upon which button is held down (1k for the 1-key, 2k for the 4-key,
and 3k for the *-key). The LEDs are attached to the four lowest order bits of
PORTB. This allows the speed setting (0 to 15) to be output to PORTB directly (e.g.,
PORTB = speed). The result is a binary number display of the current speed where
the green LED represents the LSB. The motor PWM signal is on PORTA.1.

NOTE - Since we are using only one column of the keypad, the alternative RC
circuit wiring shown in Figure 11.7, which uses only 1k resistors, is a good option
(e.g., if 2k and 3k resistors are not available).

gate
(G)

drain
(D)

source
(S)

G

D

S

Lab 11

160

Figure 11.5 Complete wiring diagram showing all components and connections

Figure 11.6 Photograph of the actual design

Figure 11.7 Alternative wiring for single-column keypad RC circuit

5V 1 k

5V

0.1 F

5V

stop
button

1 k

330
bit 0 (LSB) LED

330

1.5-3 V
dc motor

5V

330

330330

330330

bit 3 (MSB) LED

0.1 F

1 k

3 k

2 k

1

4

*

partial
keypad

green

red

red

red

IRF620
power

MOSFET

1N4001
flyback
diode

PIC16F88

RA2/AN2

RA3/AN3

RA4/AN4

RA5/MCLR

Vss

RB0

RB1

RB2

RB3

RA1/AN1

RA0/AN0

RA7/OSC1

RA6/OSC2

Vdd

RB7/AN6

RB6/AN5

RB5

RB4

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

0.1 F

1 k

1

4

*

1 k

1 k

Lab 11

161

(8) Draw a program flowchart.

Figure 11.8 shows the complete flowchart for this problem with all required logic and
looping. Note that the LED display is active only during the keypad loop while the
user is adjusting the speed. The keypad is polled using the Pot command and the
speed display is updated approximately three times a second. Each keypad button
results in a different resistance value that can vary over a small range. The motor runs
continuously in the PWM loop until the stop button is pressed. At that point the user
can adjust the speed again.

Figure 11.8 Complete Program Flowchart

Y

N

start

declare variables and constants

initialize the I/O pins and the outputs

main loop

R in
4-key
range?

keypad loop

read the keypad resistance (R)
with the POT function

Y

N

R in
1-key
range?

Y

N

R in
*-key
range?

increment the speed decrement the speed

update the LED speed display

pause for 0.3 s

turn off the LED speed display

PWM loop

turn on the LED speed display

turn on the motor for t s 

Y

N

stop
button
down?

turn off the motor for T- t s

Lab 11

162

(9) Write the code.

The PicBasic Pro code ("PWM.bas") corresponding to the flowchart shown in Figure 11.8
using the hardware illustrated in Figure 11.5 follows. The code is commented throughout with
remarks so it should be self-explanatory. Whenever you write programs, you should always
include copious remarks so you and others (e.g., co-workers and bosses) can later interpret what
you have done. Please create this (PWM.bas) and the later file (PWM.cal) before coming to
Lab so you will have more time to successfully complete the Lab in the allotted time.

NOTE: Be sure to follow the procedure in Section 11.5 and run PWM_cal.bas (shown later)
first before loading and running PWM.bas.

' PWM.bas
'
' Controls the speed of a DC motor using pulse-width modulation (PWM). The speed is adjusted
' via user input with three buttons (increase, decrease, and enter) on a numeric keypad. The relative
' speed is stored as a number that ranges from 0 (corresponding to 15% duty cycle) to 15
' (corresponding to 35% duty cycle). The current value of the speed is displayed graphically
' with a set of 4 LEDs that show the bits of the equivalent binary number.

' Identify and set the internal oscillator clock speed (required for the PIC16F88)
DEFINE OSC 8
OSCCON.4 = 1
OSCCON.5 = 1
OSCCON.6 = 1

'Turn off the A/D converter (required for the PIC16F88)
ANSEL = 0

' Define pin assignments, variables, and constants
led0 Var PORTB.0 ' LSB (bit 0) green LED
led1 Var PORTB.1 ' bit 1 red LED
led2 Var PORTB.2 ' bit 2 red LED
led3 Var PORTB.3 ' MSB (bit 3) red LED

motor Var PORTA.1 ' PWM output pin to motor MOSFET gate
change Var PORTA.3 ' button causing the motor to stop for

' speed adjustment
speed Var BYTE ' User-input speed
MAX_SPEED Con 15 ' Maximum relative speed
T Var WORD ' pulse period in milliseconds
t_on Var WORD ' pulse width (high state)
T_t Var WORD ' pulse down (low state) time: (T - t)

pot_pin Var PORTA.2 ' keypad pin for POT command
SCALE Con 255 ' Pot statement scale factor
pot_val Var BYTE ' value returned by POT command

Lab 11

163

' Initialize the I/O pins
TRISA = %11101 ' designate PORTA pins as inputs and output (RA1)
TRISB = %00000000 ' designate PORTB pins as outputs
PORTB = 0
Low motor ' make sure the motor remains off initially
' Initialize the speed display information
T = 30000 ' pulse period in microseconds
speed = 7 ' select a medium speed to begin (the middle of the 0 to 15 range)
PORTB = speed ' display the speed as a binary number on the 4 LEDs

' Main Loop
myloop:

' Endless speed change loop (until Exit with *-key)
Do While (1) ' 1:true

' Read the keypad resistance
POT pot_pin, SCALE, pot_val

' Check for the 1-key to increase the speed
If (pot_val > 30) && (pot_val < 95) && (speed < MAX_SPEED) Then

speed = speed + 1
PORTB = speed
Pause 300

' Check for the 4-key to decrease the speed
ElseIf (pot_val > 95) && (pot_val < 160) && (speed > 0) Then

speed = speed  1
PORTB = speed
Pause 300

' Check for the *-key to start motor motion
 ElseIf (pot_val > 160) Then

 Exit ' break out of the endless loop
Endif

Loop

' Turn off the LEDs
PORTB = 0

' Initialize the pulse information
t_on = T/5 / MAX_SPEED * speed + T/20*3 ' duty cycle range = 15% to 35%
T_t = T  t_on

' Run the PWM until the user presses the stop button
Do While (change == 0)

High motor
Pauseus t_on
Low motor
Pauseus T_t

Loop

Lab 11

164

' Turn the LED speed display back on
PORTB = speed

Goto myloop
' End of the program (never reached)
End

The variable "speed" stores a relative measure of the motor speed as an integer that varies
from 0 (slow) to 15 (fast). A speed of 0 corresponds to a duty cycle of 15% and the a speed of 15
corresponds to a duty cycle of 35%. These duty cycle percentages were determined experimentally
to produce a good range of motor speeds using a 5 V supply. (Note - the motor is rated at only
1.5 to 3 V so high duty cycles would result in excessive average voltage, which could damage
the motor.)

One not so obvious challenge in the program is how the variable "t" is calculated. Because
PicBasic Pro stores variables and does arithmetic with limited size integers, you have to be careful
with truncation and overflow effects when performing calculations. For example, the equation:

t_on = T/5 / MAX_SPEED * speed + T/20*3 (11.3)

would not work properly if it were written as:

t_on = speed / MAX_SPEED * T/5 + T/20*3 (11.4)

or as:
t_on = T/5 * speed / MAX_SPEED + T/20*3 (11.5)

The variable speed can vary from 0 to 15, so from Equation 11.3 where MAX_SPEED is 15, t can
vary from 3/20 T (15% of T) to 7/20 T (1/5 T + 3/20 T = 35% of T). Note that parentheses are not
required to have the calculations in the equation execute in the correct order because, as with all
programming languages, PicBasic Pro gives higher precedence to multiplication and division
(which occur from left to right), than with addition and subtraction. Therefore, to PicBasic Pro,
Equation 11.3 looks like:

t_on = (((T/5) / MAX_SPEED) * speed) + ((T/20) * 3) (11.6)

There is a problem with Equation 11.4 due to integer arithmetic truncation. Because "speed"
varies from 0 to 15 and MAX_SPEED is 15, for all values of speed except 15 (0 through 14), the
integer fraction "speed/MAX_SPEED" will be truncated to 0 (because the result of the division is
less than 1) before the remaining calculations are executed. Equation 11.5 will not work as desired
because, for high speed values the product "(T/5)*speed" will exceed the largest value that can be
stored with a 16-bit WORD variable (216  1 = 65,535). This is called overflow. For all values
of "speed" greater than 10, the product "(T/5)*speed" will result in overflow, throwing off the
remaining calculations. In Equation 11.3, the order of calculations is chosen carefully so no
truncation or overflow occurs.

The If statements in the While loop check to determine the range within which the Pot
command variable "pot_val" falls. This allows the program to determine which button on the
keypad is pressed. A separate calibration program is used to determine the appropriate values for
the range limits. This program ("PWM_cal.bas" below) uses the same hardware as for the program
above ("PWM.bas"), but here the LEDs are being used to graphically display the value returned by
the Pot command. The three red LEDs blink individually and sequentially to indicate the number

Lab 11

165

of 100s, 10s, and 1s in the "pot_val" number. The green LED is flashed as a signal between each
red LED’s digit value display. If you had a liquid crystal display (LCD) in your design, it would
be a simple matter to display the decimal number on the LCD for easy viewing. However, to use
an LCD with the Pic Basic Pro command "Lcdout" requires 7 I/O pins, and many project designs
will not have enough spare pins to drive the display. If you only have one or a few output pins
available, blinking LEDs offer an alternative method to graphically display the values of numbers
within your running program. In "PWM_cal.bas," since we have four LEDs, we used three
different LEDs to indicate the different decimal places for the number. If you didn’t have multiple
LEDs in your design or if you only had one pin to spare, you could achieve the same result by
blinking a single LED with pauses between each digit number display.

Through testing with the "PWM_cal.bas" program, using a "Pot" command scale value of
255, we found the following values for the three keys: 65 for the 1-key, 128 for the 4-key, and 189
for the *-key. That is why the following pot_val ranges where used in the "PWM.bas" program:
30 to 95 for the 1-key, 95 to 160 for the 4-key, and above 160 for the *-key. The nominal values
(65, 128, and 189) fall in the middle of these ranges allowing for small random fluctuations due to
temperature and connection resistance changes. Refer to the PicBasic Pro manual for details on
how to select an appropriate value for the "Pot" command scale value. The value 255 is appropriate
for the resistance and capacitance values we selected.

' PWM_cal.bas

' Displays the Pot values for the keypad buttons by blinking the upper three red LEDs. Each
' LED is blinked individually to indicate the number of 100s, 10s, and 1s in the
' Pot value number. The green LED is flashed once between each blinking red LED display.

' Identify and set the internal oscillator clock speed (required for the PIC16F88)
DEFINE OSC 8
OSCCON.4 = 1
OSCCON.5 = 1
OSCCON.6 = 1

' Turn off the A/D converter (required for the PIC16F88)
ANSEL = 0

' Define variables, pin assignments, and constants
led0 Var PORTB.0 ' LSB (bit 0) LED
led1 Var PORTB.1 ' bit 1 LED
led2 Var PORTB.2 ' bit 2 LED
led3 Var PORTB.3 ' MSB (bit 3) LED
motor Var PORTA.1 ' PWM output pin to motor MOSFET gate
pot_pin Var PORTA.2 ' keypad pin for POT command
SCALE Con 255 ' Pot statement scale factor
pot_val Var BYTE ' value returned by POT command
i Var BYTE ' loop variable
digs Var BYTE ' digit number for each decimal place

' Initialize the I/O pins
TRISA = %11101 ' designate PORTA pins as inputs and output (RA1)

Lab 11

166

TRISB = %00000000 ' designate PORTB pins as outputs
PORTB = 0
Low motor ' make sure the motor remains off

' User speed change loop
enter:

POT pot_pin, SCALE, pot_val

' Flash the LSB green LED and blink each of the upper 3 red LEDs to indicate the number of
' 100s, 10s, and 1s in pot_val
PORTB = 0

High led0
Pause 500
Low led0
Pause 100
digs = pot_val / 100
For i = 1 To digs

High led3
Pause 300
Low led3
Pause 300

Next i

pot_val = pot_val - digs*100
High led0
Pause 500
Low led0
Pause 100
digs = pot_val / 10
For i = 1 To digs

High led2
Pause 300
Low led2
Pause 300

Next i

digs = pot_val - digs*10
High led0
Pause 500
Low led0
Pause 100
For i = 1 To digs

High led1
Pause 300
Low led1
Pause 300

Next i
Goto enter

Lab 11

167

' End of program (never reached)
End

(10) Build and test the system.

That is your job using the procedure in Section 11.5.

11.4 Troubleshooting and Design Improvements

There are several changes you can make to the circuit to improve the design’s robustness.
You will definitely want to explore some of these recommendations if you have trouble
getting your circuit to function properly.

If your PIC doesn’t seem to be running properly (e.g., it resets when the motor start button
is pressed), it might be because the Lab power supply voltage can be affected by current spikes
(e.g., the voltage can drop suddenly, causing the PIC to reset). Because the motor is being switched
on and off abruptly, and because the currents in the motor are being switched by the internal
commutator, spikes and noise can occur on the 5V and ground lines. To help minimize these
effects, you can add capacitance (e.g., 0.1-1.0 F) across the tabs of the motor to help filter out
spikes and noise from the commutation. You can also add a 1 F or larger capacitor across the
5V and ground line inputs to your breadboard to help stabilize the voltage there. You might
also try increasing the capacitance between Vdd and ground on the PIC (i.e., replace the 0.1
F with 1 F or more). The TA can provide capacitors for testing. Also, make sure the wires
attached to the motor are soldered to the motor tabs to ensure solid and reliable connections. The
motor wires should also be twisted together to limit potential electromagnetic interference (EMI)
caused by the wire currents. You should also be careful to limit ground loops in your wiring, and
keep all wires as short as possible (e.g., buy cutting and stripping wires to length) to minimize
EMI. You can also build the circuit on a separate breadboard that has a metal backing, which
adds capacitance to all connect points and helps reduce EMI.

Another alternative is to use separate power sources for the PIC circuit (e.g., the function
generator) and the motor (e.g., a Lab power supply, 4 AA batteries in series for 6V, or a 9V battery
with a 5V voltage regulator and 1 F capacitor). This will help limit voltage fluctuations in the
PIC circuit when the motor turns on and runs. Using a battery or AC adapter to power the whole
system (the PIC circuit and the motor) is another alternative. In this case, a capacitor (e.g., 1F or
more) is required across the power and ground lines to help keep the output voltage stable. The
TA will demonstrate the battery-power alternative.

If the motor has a difficult time starting at slow speed with the low-duty-cycle PWM signal,
it can help to turn the motor on briefly (e.g., 0.5 s) with a non-PWM constant voltage to help get
the motor starting, before starting the PWM signal. An alternative is to just give the motor a nudge
manually by turning the shaft in the rotation direction.

If you can’t get the Pot command stuff to work properly, an alternative is to wire up the
buttons to separate inputs (with pull-up or pull-down resistors) to read them directly as digital
inputs instead. The TA will demonstrate this alternative.

For other advice and recommendations, see Section 15.5 in Lab 15.

Lab 11

168

11.5 Procedure / Summary Sheet

(1) Complete and attach a detailed functional diagram, using Sections 1.3 and 7.9 in the
textbook for guidance. Submit this on a separate sheet of paper.

(2) Use an ASCII editor (e.g., Windows Notepad or MS Word - Text Only) to create the
program "PWM_cal.bas" listed in Section 11.3. Save the file in a folder in your
network file space.

(3) Follow the procedure in Section 9.4 of Lab 9 to store your program in a PIC
microcontroller that you can insert into your circuit.

(4) Build the circuit shown in Figure 11.5 and insert the PIC programmed with
"PWM_cal." You can omit the motor driver circuit for now because it is not used in
the calibration program.

(5) Report the nominal Pot values displayed for your program for each of the active
keypad buttons. Be sure to hold each button down long enough (for 2 green LED
blinks) to start the red LED sequence.

pot_val for the 1-key: 100s: ______ 10s: _______ 1s: ________ value: ______

pot_val for the 4-key: 100s: ______ 10s: _______ 1s: ________ value: ______

pot_val for the *-key: 100s: ______ 10s: _______ 1s: ________ value: ______

(6) Repeat Steps 2 and 3 for the "PWM.bas" program, replacing the "PWM_cal" program
on your PIC. Modify the "pot_val" ranges in the PWM.bas "speed change loop"
If statements, if necessary based on the values you found in Step 5. Add the motor
driver circuit to your board if you haven’t done so already. Insert the reprogrammed
PIC into your circuit.

(7) See Section 11.4 if your circuit is assembled correctly but does not work
properly. One thing worth checking is whether or not the motor PWM signal is
working as expected. To do this, disconnect the transistor and look at the PIC output
signal on the oscilloscope as the speed is changed.

(8) Show your functioning circuit to your TA so he or she can verify it is working.

Lab 11

169

LAB 11 QUESTIONS

Group: ____ Names: _________________________ _____________________________

 _________________________ _____________________________

(1) Did your circuit work the first time, without modifications? If not, what things did you try
from Section 11.4? Which things worked, and why do you think they worked?

(2) Explain in detail how you think the Pot command works.

(3) In the PWM.bas program, we used 30,000 microseconds for the PWM period. What
frequency f (in Hz) does this correspond to?

Lab 11

170

(4) How would the motor respond to a very low (close to 0%) duty cycle PWM signal?

How would changing the PWM signal frequency f (i.e., making it much lower or much
higher) change the motor response?

(5) What would happen if other keys (besides the 1-key, 4-key, and *-key) are pressed down
during the keypad loop?

What would happen if two of the three valid keys are pressed and held down at once (e.g.,
the 1-key and the *-key)?

(6) In PicBasic Pro, to what values would the following expressions evaluate? Hint: PicBasic
Pro uses integer division and performs one operation at a time.

a) 2 / 3 * 4

b) 2 * 4 / 3

