
Chapter 7 Summary
Microcontroller Programming and Interfacing

PIC16F84 pin-out and required external components

PIC16F84 instruction set

Mnemonic and Operands Description

ADDLW k add literal and W

ADDWF f, d add W and f

ANDLW k AND literal with W

ANDWF f, d AND W with f

BCF f, b bit clear f

BSF f, b bit set f

BTFSC f, b bit test f, skip if clear

BTFSS f, b bit test f, skip if set

CALL k call subroutine

CLRF f clear f

CLRW clear W

CLRWDT clear Watchdog Timer

PIC16F84

RA2

RA3

RA4

MCLR

Vss

RB0

RB1

RB2

RB3

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

5V 22 pF

22 pF

4 MHz

1 k

5V

0.1 F�

 Selected PicBasic Pro math operators and functions

COMF f, d complement f

DECF f, d decrement f

DECFSZ f, d decrement f, Skip if 0

GOTO k go to address

INCF f, d increment f

INCFSZ f, d increment f, skip if 0

IORLW k inclusive OR literal with W

IORWF f, d inclusive OR W with f

MOVF f, d move f

MOVLW k move literal to W

MOVWF f move W to f

NOP no operation

RETFIE return from interrupt

RETLW k return with literal in W

RETURN return from subroutine

RLF f, d rotate f left 1 bit

RRF f, d rotate f right 1 bit

SLEEP go into standby mode

SUBLW k subtract W from literal

SUBWF f, d subtract W from f

SWAPF f, d Swap nibbles in f

XORLW k Exclusive OR literal with W

XORWF f, d Exclusive OR W with f

math operator
or function description

A + B add A and B

A � B subtract B from A

A * B multiply A and B

A / B divide A by B

Mnemonic and Operands Description

PicBasic Pro logical comparison operators

PicBasic Pro statement summary

A << n shift A n bits to the left

A >> n shift A n bits to the right

COS A return the cosine of A

A MAX B return the maximum of A and B

A MIN B return the minimum of A and B

SIN A return the sine of A

SQR A return the square root of A

A & B return the bitwise AND of A and B

A | B return the bitwise OR of A and B

A ^ B return the bitwise exclusive OR of A and B

~A return the bitwise NOT of A

operator description

= or == equal

<> or != not equal

< less than

> greater than

<= less than or equal to

>= greater than or equal to

Statement Description

@ assembly statement insert one line of assembly language
code

ADCIN channel, var read the on-chip analog to digital
converter (if there is one)

ASM ... ENDASM insert an assembly language code section
consisting of one or more statements

BRANCH index, [label1{, label2, ...}] computed GOTO that jumps to a label
based on index

math operator
or function description

BRANCHL index, [label1{, label2, ...}]

BRANCH to a label that can be outside
of the current page of code memory (for
PICs with more than 2k of program
ROM)

BUTTON pin, down_state,
auto_repeat_delay, auto_repeat_rate,
countdown_variable, action_state, label

read the state of a pin and perform
debounce (by use of a delay) and auto-
repeat (if used within a loop)

CALL assembly_label call an assembly language subroutine

CLEAR zero all variables

CLEARWDT clear the Watchdog Timer

COUNT pin, period, var count the number of pulses occurring on
a pin during a period

DATA {@ location,} constant1{,
constant2, ...}

define initial contents of the on-chip
EEPROM (same as the EEPROM
statement)

DEBUG item1{, item2, ...} asynchronous serial output to a pin at a
fixed baud rate

DEBUGIN {timeout, label,}
[item1{,{item2, ...}]

asynchronous serial input from a pin at a
fixed baud rate

DISABLE disable ON INTERRUPT and ON
DEBUG processing

DISABLE DEBUG disable ON DEBUG processing

DISABLE INTERRUPT disable ON INTERRUPT processing

DTMFOUT pin, {on_ms, off_ms,}
[tone1{, tone2, ...}] produce touch-tones on a pin

{EEPROM {@ location,} constant1{,
constant2, ...}}

define initial contents of on-chip
EEPROM (same as DATA statement)

ENABLE enable ON INTERRUPT and ON
DEBUG processing

ENABLE DEBUG enable ON DEBUG processing

ENABLE INTERRUPT enable ON INTERRUPT processing

END stop execution and enter low power
mode

Statement Description

FOR count = start TO end {STEP {-}
inc}
 {body statements}
NEXT {count}

repeatedly execute statements as count
goes from start to end in fixed increment

FREQOUT pin, on_ms, freq1{, freq2} produce up to two frequencies on a pin

GOSUB label call a PicBasic subroutine at the specified
label

GOTO label continue execution at the specified label

HIGH pin make pin output high

HSERIN {parity_label,} {time_out,
label,} [item1{, item2, ...}]

hardware asynchronous serial input (if
there is a hardware serial port)

HSEROUT [item1{, item2, ...}] hardware asynchronous serial output (if
there is a hardware serial port)

I2CREAD data_pin, clock_pin, control,{
address,} [var1{, var2, ...}]{, label}

read bytes from an external I2C serial
EEPROM device

I2CWRITE data_pin, clock_pin,
control,{ address,} [var1{, var2, ...}]{,
label}

write bytes to an external I2C serial
EEPROM device

IF log_comp THEN label conditionally jump to a label

IF log_comp THEN
 true_statements
ELSE
 false_statements
ENDIF

conditional execution of statements

INPUT pin make pin an input

LCDIN {address,} [var1{, var2, ...}] read RAM on a liquid crystal display
(LCD)

LCDOUT item1{, item2, ...} display characters on a liquid crystal
display (LCD)

{LET} var = value assignment statement (assigns a value to
a variable)

LOOKDOWN value, [const1{, const2,
...}], var search constant table for a value

LOOKDOWN2 value,{ test} [value1{,
value2, ...}], var

search constant / variable table for a
value

Statement Description

LOOKUP index, [const1{, const2, ...}],
var fetch constant value from a table

LOOKUP2 index, [value1{, value2, ...}],
var

fetch constant / variable value from a
table

LOW pin make pin output low

NAP period power down processor for a selected
period of time

ON DEBUG GOTO label
execute PicBasic debug subroutine at
label after every statement if debug is
enabled

ON INTERRUPT GOTO label execute PicBasic subroutine at label
when an interrupt is detected

OUTPUT pin make pin an output

PAUSE period delay a given number of milliseconds

PAUSEUS period delay a given number of microseconds

{PEEK address, var} read byte from a register

{POKE address, var} write byte to a register

POT pin, scale, var

read resistance of a potentiometer, or
other variable resistance device,
connected to a pin with a series capacitor
to ground

PULSIN pin, state, var measure the width of a pulse on a pin

PULSOUT pin, period generate a pulse on a pin

PWM pin, duty, cycles output a pulse width modulated (PWM)
pulse train to pin

RANDOM var generate a pseudo-random number

RCTIME pin, state, var measure pulse width on a pin

READ address, var read a byte from on-chip EEPROM

READCODE address, var read a word from code memory

RESUME {label} continue execution after interrupt
handling

RETURN continue execution at the statement
following last executed GOSUB

REVERSE pin make output pin an input or an input pin
an output

Statement Description

SERIN pin, mode,{ timeout, label,}
{[qual1, qual2, ...],}{ item1{, item2, ...}}

asynchronous serial input (Basic Stamp 1
style)

SERIN2 data_pin{\flow_pin}, mode,
{parity_label,} {timeout, label,}
[item1{, item2, ...}]

asynchronous serial input (Basic Stamp 2
style)

SEROUT pin, mode, [item1{, item2,
...}]

asynchronous serial output (Basic Stamp
1 style)

SEROUT2 data_pin{\flow_pin}, mode,
{pace,} {timeout, label,} [item1{, item2,
...}]

asynchronous serial output (Basic Stamp
2 style)

SHIFTIN data_pin, clock_pin, mode,
[var1{\bits1}{, var2{\bits2}, ...}] synchronous serial input

SHIFTOUT data_pin, clock_pin, mode,
[var1{\bits1}{, var2{\bits2}, ...}] synchronous serial output

SLEEP period power down the processor for a given
number of seconds

SOUND pin, [note1, duration1{, note2,
duration2, ...}]

generate a tone or white-noise on a
specified pin

STOP stop program execution

SWAP var1, var2 exchange the values of two variables

TOGGLE pin change the state of an output pin

WHILE logical_comp
 statements
WEND

execute code while condition is true

WRITE address, value write a byte to on-chip EEPROM

WRITECODE address, value write a word to code memory

XIN data_pin, zero_pin, {timeout,
label,} [var1{, var2, ...}]]

receive data from an external X-10 type
device

XOUT data_pin, zero_pin,
[house_code1\key_code1{\repeat1}{,
house_code2\key_code2{\repeat2, ...}]

send data to an external X-10 type device

Statement Description

Interface circuits for input devices

input device PIC input pin

5V

RB0 through RB7
weak pull-up

switch

TTL

CMOS (5V)

slowly changing
and/or noisy
digital signal

RA0 through RA4
or RB0 through RB7

TTL buffers

RA4
Schmitt trigger

buffer

5V

open collectro TTL
or open drain CMOS

Interface circuits for output devices

Method to Design a Microcontroller-based System:

1. define the problem
2. select an appropriate microcontroller model
3. identify necessary interface circuits
4. decide on a programming language
5. draw the schematic
6. draw a program flowchart
7. write the code
8. build and test the system

output devicePIC output pin

CMOS CMOS
or TTL

RA0 through RA3

TTL TTLRB0 through RB7

RA4
open drain

Vss

small
current

load
Vsupply

CMOS
or TTL

CMOS
or TTL

CMOS
or TTL

load

Vsupply

load

Vsupply

load

Vsupply

BJT power
transistor

power
relay

n-channel
enhancement

power
MOSFET

CMOS
or TTL

RA0 through RA3
or RB0 through RB7

buffer

multiple
CMOS
or TTL

RA0 through RA3
or RB0 through RB7

CMOS
or TTL

RA0 through RA3
or RB0 through RB7

D/A amplifier load

5V

CMOSTTL

