<u>Chapter 2 Summary</u> Electric Circuits and Components

current (A):
$$I(t) = \frac{dq}{dt}$$

$$ohm's\ law\ (V):$$
 $V=IR$

resistor value (Ω): $R = ab \times 10^c \pm \text{tolerance (\%)}$

a, b, and c Bands		tol Ba	tol Band	
Color	Value	Color	Value	
Black	0	Gold	±5%	
Brown	1	Silver	$\pm 10\%$	
Red	2	Nothing	±20%	
Orange	3			
Yellow	4			
Green	5			
Blue	6			
Violet	7			
Gray	8			
White	9			

capacitor (F):
$$V(t) = \frac{1}{C} \int_{0}^{t} I(\tau) d\tau = \frac{Q(t)}{C} \quad I(t) = C \frac{dV}{dt}$$

inductor (H):
$$V(t) = L \frac{dI}{dt} \quad I(t) = \frac{1}{L} \int_{0}^{t} V(\tau) d\tau$$

Kirchoff's Voltage Law (KVL):
$$\sum_{i=1}^{N} V_i = 0$$

Kirchoff's Current Law (KCL):
$$\sum_{i=1}^{N} I_i = 0$$

series resistors:
$$R_{\rm eq} = R_1 + R_2$$

$$C_{\text{eq}} = \frac{C_1 C_2}{C_1 + C_2}$$

$$L_{\rm eq} = L_1 + L_2$$

series resistor voltage division:

$$V_{R_1} = \frac{R_1}{R_1 + R_2} V_s, \quad V_{R_2} = \frac{R_2}{R_1 + R_2} V_s$$

$$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} \quad R_{\text{eq}} = \frac{R_1 R_2}{R_1 + R_2}$$

$$C_{\rm eq} = C_1 + C_2$$

$$L_{\rm eq} = \frac{L_1 L_2}{L_1 + L_2}$$

parallel resistor current division:

$$I_1 = \frac{R_2}{R_1 + R_2}I, \quad I_2 = \frac{R_1}{R_1 + R_2}I$$

ideal voltage source: zero output resistance, can supply infinite current.

ideal current source: infinite output resistance, can supply infinite voltage.

ideal voltmeter: infinite input resistance, draws no current.

ideal ammeter: zero input resistance, no voltage drop.

ac signal:
$$V(t) = V_m \sin(\omega t + \phi)$$

frequency (Hz):
$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$

phasor:
$$V = V_m e^{j(\omega t + \phi)} = V_m \langle \phi \rangle = V_m [\cos(\omega t + \phi) + j\sin(\omega t + \phi)]$$

phasor relationships:

$$r = \sqrt{x^2 + y^2}$$

$$\phi = \tan^{-1} \left(\frac{y}{x}\right)$$

$$r_1 \langle \phi_1 \rangle \cdot r_2 \langle \phi_2 \rangle = r_1 \cdot r_2 \langle \phi_1 + \phi_2 \rangle$$

$$r_1 \langle \phi_1 \rangle / r_2 \langle \phi_2 \rangle = r_1 / r_2 \langle \phi_1 - \phi_2 \rangle$$

ac Ohm's Law with impedance: V = ZI

resistor impedance: $Z_R = R$

inductor impedance: $Z_L = j\omega L = \omega L \langle 90^{\circ} \rangle$

capacitor impedance: $Z_C = \frac{1}{i\omega C} = \frac{-j}{\omega C} = \frac{1}{\omega C} \langle -90^{\circ} \rangle$

power: $P = \frac{dW}{dt} = V\frac{dq}{dt} = VI$

dc resistive power: $P = VI = I^2R = V^2/R$

rms: $I_{\text{rms}} = \sqrt{\frac{1}{T}} \int_{0}^{T} J^{2} dt = \frac{I_{m}}{\sqrt{2}} \quad V_{\text{rms}} = \sqrt{\frac{1}{T}} \int_{0}^{T} V^{2} dt = \frac{V_{m}}{\sqrt{2}}$

ac resistive power: $P_{\text{avg}} = V_{\text{rms}}I_{\text{rms}} = RI_{\text{rms}}^2 = V_{\text{rms}}^2/R$

transformer: $V_S = \frac{N_S}{N_P} V_P$ $I_S = \frac{N_P}{N_S} I_P$