Chapter 10 Summary Actuators

Lorentz's Force Law:
$$\vec{F} = \vec{I} \times \vec{B}$$

dc motor electrical equations:

back emf:
$$V_{\rm emf} = k_e \omega$$

input voltage:
$$V_{\rm in} = L \frac{dI_{\rm in}}{dt} + RI_{\rm in} + k_e \omega$$

permanent magnet motor dynamic equations:

torque:
$$T = k_t I_{in} = (J_a + J_L) \frac{d\omega}{dt} + T_f + T_L$$

input voltage:
$$V_{\rm in} = RI_{\rm in} + k_e \omega = \left(\frac{R}{k}\right)T + k_e \omega$$

$$T = \left(\frac{k_t}{R}\right) V_{\rm in} - \left(\frac{k_e k_t}{R}\right) \omega$$

$$T(\omega) = T_s \left(1 - \frac{\omega}{\omega_{\text{max}}}\right)$$

stall torque:
$$T_s = \left(\frac{k_t}{R}\right) V_{\text{in}}$$

no-load speed:
$$\omega_{\text{max}} = \frac{T_s R}{k_e k_t}$$

power:
$$P(\omega) = T\omega = \omega T_s \left(1 - \frac{\omega}{\omega_{max}}\right)$$

speed for maximum power:
$$\omega^* = \frac{1}{2}\omega_{max}$$

stall current:
$$I_s = \frac{V_{\rm in}}{R}$$

pulse width modulation (PWM):

period:
$$T = \frac{1}{f}$$
 duty cycle = $\frac{t}{T}$ 100%

unipolar step phase sequence

	Step	ϕ_1	ϕ_2	ϕ_3	ϕ_4
CW ↓	1	ON	OFF	ON	OFF
	1.5	ON	OFF	OFF	OFF
	2	ON	OFF	OFF	ON
	2.5	OFF	OFF	OFF	ON
CCW ↑	3	OFF	ON	OFF	ON
1	3.5	OFF	ON	OFF	OFF
	4	OFF	ON	ON	OFF
	4.5	OFF	OFF	ON	OFF

motor selection considerations:

• Will the motor start and will it accelerate fast enough?

$$\alpha = (T_{\text{motor}} - T_{\text{load}})/J$$

- What is the maximum speed the motor can produce?
- What is the operating duty cycle?
- How much power does the load require?
 What is the load inertia?
- Is the load to be driven at constant speed?
- Is accurate position or speed control required?
 Is a transmission or gearbox required?

$$J_{\rm eff} = J_{\rm load} \left(\frac{\omega_{\rm load}}{\omega_{\rm motor}} \right)^2$$

- Is the motor torque-speed curve well matched to the load?
- For a given motor torque-speed curve and load line, what will the operating speed
- Is it necessary to reverse the motor?
- Are there any size and weight restrictions?